博客
关于我
基于Flink+ClickHouse构建实时游戏数据分析最佳实践
阅读量:785 次
发布时间:2019-03-25

本文共 626 字,大约阅读时间需要 2 分钟。

在互联网和游戏行业中,用户行为数据的实时分析是支持业务运营的关键。然而,随着数据量的快速增长,传统分析方法往往面临延迟和性能瓶颈的问题。为了应对这类挑战,我们设计了一套基于云技术的实时数据分析方案。

本方案通过结合云数据库ClickHouse和流计算技术,实现了从数据采集到分析的全流程优化。具体而言,我们采用以下策略:

  • 数据存储与分析

    通过云数据库ClickHouse替换原有的Presto数仓,我们不仅提升了数据处理性能,还实现了更高效的实时分析能力。ClickHouse 的优化架构使得千亿级数据的分析时间从最初的10分钟缩短至仅需30秒。

  • 高效数据处理

    ClickHouse支持多维度的数据聚合和筛选操作,特别适合处理复杂的用户行为分析场景。同时,ClickHouse的批量写入机制能够满足每小时230亿级别的数据写入需求,保证了在高峰期业务的稳定运行。

  • 快速部署与扩展

    ClickHouse的开箱即用特性使得我们能够快速搭建数据分析基础设施,支持新游戏的服务器上线需求。此外,基于全球多Region部署的架构设计,确保了数据分析服务的高可用性和可扩展性。

  • 我们的技术选型包括以下主要组件:

    • 数据存储:云数据库ClickHouse
    • 消息队列:基于Kafka的高效数据传输方案
    • 流计算:支持Flink的实时数据处理
    • 数据可视化:Intele Adventures的图表展示平台

    通过以上技术组合,我们构建了一个高性能、强扩展性的实时数据分析架构。

    转载地址:http://xxvuk.baihongyu.com/

    你可能感兴趣的文章
    mysql case when 乱码_Mysql CASE WHEN 用法
    查看>>
    Multicast1
    查看>>
    MySQL Cluster 7.0.36 发布
    查看>>
    Multimodal Unsupervised Image-to-Image Translation多通道无监督图像翻译
    查看>>
    MySQL Cluster与MGR集群实战
    查看>>
    multipart/form-data与application/octet-stream的区别、application/x-www-form-urlencoded
    查看>>
    mysql cmake 报错,MySQL云服务器应用及cmake报错解决办法
    查看>>
    Multiple websites on single instance of IIS
    查看>>
    mysql CONCAT()函数拼接有NULL
    查看>>
    multiprocessing.Manager 嵌套共享对象不适用于队列
    查看>>
    multiprocessing.pool.map 和带有两个参数的函数
    查看>>
    MYSQL CONCAT函数
    查看>>
    multiprocessing.Pool:map_async 和 imap 有什么区别?
    查看>>
    MySQL Connector/Net 句柄泄露
    查看>>
    multiprocessor(中)
    查看>>
    mysql CPU使用率过高的一次处理经历
    查看>>
    Multisim中555定时器使用技巧
    查看>>
    MySQL CRUD 数据表基础操作实战
    查看>>
    multisim变压器反馈式_穿过隔离栅供电:认识隔离式直流/ 直流偏置电源
    查看>>
    mysql csv import meets charset
    查看>>