博客
关于我
基于Flink+ClickHouse构建实时游戏数据分析最佳实践
阅读量:785 次
发布时间:2019-03-25

本文共 626 字,大约阅读时间需要 2 分钟。

在互联网和游戏行业中,用户行为数据的实时分析是支持业务运营的关键。然而,随着数据量的快速增长,传统分析方法往往面临延迟和性能瓶颈的问题。为了应对这类挑战,我们设计了一套基于云技术的实时数据分析方案。

本方案通过结合云数据库ClickHouse和流计算技术,实现了从数据采集到分析的全流程优化。具体而言,我们采用以下策略:

  • 数据存储与分析

    通过云数据库ClickHouse替换原有的Presto数仓,我们不仅提升了数据处理性能,还实现了更高效的实时分析能力。ClickHouse 的优化架构使得千亿级数据的分析时间从最初的10分钟缩短至仅需30秒。

  • 高效数据处理

    ClickHouse支持多维度的数据聚合和筛选操作,特别适合处理复杂的用户行为分析场景。同时,ClickHouse的批量写入机制能够满足每小时230亿级别的数据写入需求,保证了在高峰期业务的稳定运行。

  • 快速部署与扩展

    ClickHouse的开箱即用特性使得我们能够快速搭建数据分析基础设施,支持新游戏的服务器上线需求。此外,基于全球多Region部署的架构设计,确保了数据分析服务的高可用性和可扩展性。

  • 我们的技术选型包括以下主要组件:

    • 数据存储:云数据库ClickHouse
    • 消息队列:基于Kafka的高效数据传输方案
    • 流计算:支持Flink的实时数据处理
    • 数据可视化:Intele Adventures的图表展示平台

    通过以上技术组合,我们构建了一个高性能、强扩展性的实时数据分析架构。

    转载地址:http://xxvuk.baihongyu.com/

    你可能感兴趣的文章
    nmap使用
    查看>>
    nmap使用实战(附nmap安装包)
    查看>>
    Nmap哪些想不到的姿势
    查看>>
    Nmap扫描教程之Nmap基础知识
    查看>>
    nmap指纹识别要点以及又快又准之方法
    查看>>
    Nmap渗透测试指南之指纹识别与探测、伺机而动
    查看>>
    Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
    查看>>
    NMAP网络扫描工具的安装与使用
    查看>>
    NMF(非负矩阵分解)
    查看>>
    nmon_x86_64_centos7工具如何使用
    查看>>
    NN&DL4.1 Deep L-layer neural network简介
    查看>>
    NN&DL4.3 Getting your matrix dimensions right
    查看>>
    NN&DL4.7 Parameters vs Hyperparameters
    查看>>
    NN&DL4.8 What does this have to do with the brain?
    查看>>
    nnU-Net 终极指南
    查看>>
    No 'Access-Control-Allow-Origin' header is present on the requested resource.
    查看>>
    No 'Access-Control-Allow-Origin' header is present on the requested resource.
    查看>>
    NO 157 去掉禅道访问地址中的zentao
    查看>>
    no available service ‘default‘ found, please make sure registry config corre seata
    查看>>
    No compiler is provided in this environment. Perhaps you are running on a JRE rather than a JDK?
    查看>>