博客
关于我
基于Flink+ClickHouse构建实时游戏数据分析最佳实践
阅读量:785 次
发布时间:2019-03-25

本文共 626 字,大约阅读时间需要 2 分钟。

在互联网和游戏行业中,用户行为数据的实时分析是支持业务运营的关键。然而,随着数据量的快速增长,传统分析方法往往面临延迟和性能瓶颈的问题。为了应对这类挑战,我们设计了一套基于云技术的实时数据分析方案。

本方案通过结合云数据库ClickHouse和流计算技术,实现了从数据采集到分析的全流程优化。具体而言,我们采用以下策略:

  • 数据存储与分析

    通过云数据库ClickHouse替换原有的Presto数仓,我们不仅提升了数据处理性能,还实现了更高效的实时分析能力。ClickHouse 的优化架构使得千亿级数据的分析时间从最初的10分钟缩短至仅需30秒。

  • 高效数据处理

    ClickHouse支持多维度的数据聚合和筛选操作,特别适合处理复杂的用户行为分析场景。同时,ClickHouse的批量写入机制能够满足每小时230亿级别的数据写入需求,保证了在高峰期业务的稳定运行。

  • 快速部署与扩展

    ClickHouse的开箱即用特性使得我们能够快速搭建数据分析基础设施,支持新游戏的服务器上线需求。此外,基于全球多Region部署的架构设计,确保了数据分析服务的高可用性和可扩展性。

  • 我们的技术选型包括以下主要组件:

    • 数据存储:云数据库ClickHouse
    • 消息队列:基于Kafka的高效数据传输方案
    • 流计算:支持Flink的实时数据处理
    • 数据可视化:Intele Adventures的图表展示平台

    通过以上技术组合,我们构建了一个高性能、强扩展性的实时数据分析架构。

    转载地址:http://xxvuk.baihongyu.com/

    你可能感兴趣的文章
    netcat的端口转发功能的实现
    查看>>
    netfilter应用场景
    查看>>
    netlink2.6.32内核实现源码
    查看>>
    Netpas:不一样的SD-WAN+ 保障网络通讯品质
    查看>>
    NetScaler的常用配置
    查看>>
    netsh advfirewall
    查看>>
    NETSH WINSOCK RESET这条命令的含义和作用?
    查看>>
    Netty WebSocket客户端
    查看>>
    netty 主要组件+黏包半包+rpc框架+源码透析
    查看>>
    Netty 异步任务调度与异步线程池
    查看>>
    Netty中集成Protobuf实现Java对象数据传递
    查看>>
    Netty事件注册机制深入解析
    查看>>
    Netty原理分析及实战(四)-客户端与服务端双向通信
    查看>>
    Netty客户端断线重连实现及问题思考
    查看>>
    Netty工作笔记0006---NIO的Buffer说明
    查看>>
    Netty工作笔记0007---NIO的三大核心组件关系
    查看>>
    Netty工作笔记0011---Channel应用案例2
    查看>>
    Netty工作笔记0013---Channel应用案例4Copy图片
    查看>>
    Netty工作笔记0014---Buffer类型化和只读
    查看>>
    Netty工作笔记0020---Selectionkey在NIO体系
    查看>>