博客
关于我
基于Flink+ClickHouse构建实时游戏数据分析最佳实践
阅读量:785 次
发布时间:2019-03-25

本文共 626 字,大约阅读时间需要 2 分钟。

在互联网和游戏行业中,用户行为数据的实时分析是支持业务运营的关键。然而,随着数据量的快速增长,传统分析方法往往面临延迟和性能瓶颈的问题。为了应对这类挑战,我们设计了一套基于云技术的实时数据分析方案。

本方案通过结合云数据库ClickHouse和流计算技术,实现了从数据采集到分析的全流程优化。具体而言,我们采用以下策略:

  • 数据存储与分析

    通过云数据库ClickHouse替换原有的Presto数仓,我们不仅提升了数据处理性能,还实现了更高效的实时分析能力。ClickHouse 的优化架构使得千亿级数据的分析时间从最初的10分钟缩短至仅需30秒。

  • 高效数据处理

    ClickHouse支持多维度的数据聚合和筛选操作,特别适合处理复杂的用户行为分析场景。同时,ClickHouse的批量写入机制能够满足每小时230亿级别的数据写入需求,保证了在高峰期业务的稳定运行。

  • 快速部署与扩展

    ClickHouse的开箱即用特性使得我们能够快速搭建数据分析基础设施,支持新游戏的服务器上线需求。此外,基于全球多Region部署的架构设计,确保了数据分析服务的高可用性和可扩展性。

  • 我们的技术选型包括以下主要组件:

    • 数据存储:云数据库ClickHouse
    • 消息队列:基于Kafka的高效数据传输方案
    • 流计算:支持Flink的实时数据处理
    • 数据可视化:Intele Adventures的图表展示平台

    通过以上技术组合,我们构建了一个高性能、强扩展性的实时数据分析架构。

    转载地址:http://xxvuk.baihongyu.com/

    你可能感兴趣的文章
    Mysql 表分区
    查看>>
    mysql 表的操作
    查看>>
    mysql 视图,视图更新删除
    查看>>
    MySQL 触发器
    查看>>
    mysql 让所有IP访问数据库
    查看>>
    mysql 记录的增删改查
    查看>>
    MySQL 设置数据库的隔离级别
    查看>>
    MySQL 证明为什么用limit时,offset很大会影响性能
    查看>>
    Mysql 语句操作索引SQL语句
    查看>>
    MySQL 误操作后数据恢复(update,delete忘加where条件)
    查看>>
    MySQL 调优/优化的 101 个建议!
    查看>>
    mysql 转义字符用法_MySql 转义字符的使用说明
    查看>>
    mysql 输入密码秒退
    查看>>
    mysql 递归查找父节点_MySQL递归查询树状表的子节点、父节点具体实现
    查看>>
    mysql 里对root及普通用户赋权及更改密码的一些命令
    查看>>
    Mysql 重置自增列的开始序号
    查看>>
    MySQL 错误
    查看>>
    MySQL 面试,必须掌握的 8 大核心点
    查看>>
    MySQL 高可用性之keepalived+mysql双主
    查看>>
    MySql-2019-4-21-复习
    查看>>